Tighter quadratically constrained convex reformulations for semi-continuous quadratic programming
نویسندگان
چکیده
منابع مشابه
On convex relaxations for quadratically constrained quadratic programming
We consider convex relaxations for the problem of minimizing a (possibly nonconvex) quadratic objective subject to linear and (possibly nonconvex) quadratic constraints. Let F denote the feasible region for the linear constraints. We first show that replacing the quadratic objective and constraint functions with their convex lower envelopes on F is dominated by an alternative methodology based ...
متن کاملConvex quadratic relaxations of nonconvex quadratically constrained quadratic programs
Nonconvex quadratic constraints can be linearized to obtain relaxations in a wellunderstood manner. We propose to tighten the relaxation by using second order cone constraints, resulting in a convex quadratic relaxation. Our quadratic approximation to the bilinear term is compared to the linear McCormick bounds. The second order cone constraints are based on linear combinations of pairs of vari...
متن کاملA Smoothing Newton-Type Algorithm of Stronger Convergence for the Quadratically Constrained Convex Quadratic Programming
In this paper we propose a smoothing Newton-type algorithm for the problem of minimizing a convex quadratic function subject to finitely many convex quadratic inequality constraints. The algorithm is shown to converge globally and possess stronger local superlinear convergence. Preliminary numerical results are also reported.
متن کاملConstraint Programming for Strictly Convex Integer Quadratically-Constrained Problems
Inspired by the geometric reasoning exploited in discrete ellipsoid-based search (DEBS) from the communications literature, we develop a constraint programming (CP) approach to solve problems with strictly convex quadratic constraints. Such constraints appear in numerous applications such as modelling the ground-to-satellite distance in global positioning systems and evaluating the efficiency o...
متن کاملOn Efficient Semidefinite Relaxations for Quadratically Constrained Quadratic Programming
Two important topics in the study of Quadratically Constrained Quadratic Programming (QCQP) are how to exactly solve a QCQP with few constraints in polynomial time and how to find an inexpensive and strong relaxation bound for a QCQP with many constraints. In this thesis, we first review some important results on QCQP, like the S-Procedure, and the strength of Lagrangian Relaxation and the semi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Industrial & Management Optimization
سال: 2021
ISSN: 1553-166X
DOI: 10.3934/jimo.2020071